[Updated: Mon, Sep 23, 2024 - 14:49:22 ]
The concept of bagging is based on the idea that predictions from an ensemble of models are better than any single model predictions. Suppose we randomly draw multiple samples from a population and then develop a prediction model for an outcome using each sample. The aggregated predictions from these multiple models would perform better due to the reduced model variance (aggregation would reduce noise due to sampling).
Due to the lack of access to the population (even if we assume there is a well-defined population), we can mimic the sampling from a population by replacing it with bootstrapping. A Bootstrap sample is a random sample with replacement from the sample data.
Suppose there is sample data with ten observations and three predictors. Below are five bootstrap samples from this sample data.
d <- data.frame(x1 =c(20,25,30,42,10,60,65,55,80,90),
x2 =c(10,15,12,20,45,75,70,80,85,90),
x3 =c(25,30,35,20,40,80,85,90,92,95),
label= c('A','B','C','D','E','F','G','H','I','J'))
d
x1 x2 x3 label
1 20 10 25 A
2 25 15 30 B
3 30 12 35 C
4 42 20 20 D
5 10 45 40 E
6 60 75 80 F
7 65 70 85 G
8 55 80 90 H
9 80 85 92 I
10 90 90 95 J
x1 x2 x3 label
2 25 15 30 B
2.1 25 15 30 B
6 60 75 80 F
1 20 10 25 A
8 55 80 90 H
10 90 90 95 J
10.1 90 90 95 J
8.1 55 80 90 H
10.2 90 90 95 J
3 30 12 35 C
# Bootstrap sample 2
d[sample(1:10,replace = TRUE),]
x1 x2 x3 label
4 42 20 20 D
9 80 85 92 I
9.1 80 85 92 I
10 90 90 95 J
6 60 75 80 F
10.1 90 90 95 J
3 30 12 35 C
2 25 15 30 B
9.2 80 85 92 I
4.1 42 20 20 D
# Bootstrap sample 3
d[sample(1:10,replace = TRUE),]
x1 x2 x3 label
9 80 85 92 I
3 30 12 35 C
6 60 75 80 F
3.1 30 12 35 C
4 42 20 20 D
5 10 45 40 E
4.1 42 20 20 D
8 55 80 90 H
10 90 90 95 J
3.2 30 12 35 C
# Bootstrap sample 4
d[sample(1:10,replace = TRUE),]
x1 x2 x3 label
8 55 80 90 H
7 65 70 85 G
3 30 12 35 C
1 20 10 25 A
10 90 90 95 J
2 25 15 30 B
9 80 85 92 I
10.1 90 90 95 J
6 60 75 80 F
10.2 90 90 95 J
# Bootstrap sample 5
d[sample(1:10,replace = TRUE),]
x1 x2 x3 label
3 30 12 35 C
10 90 90 95 J
5 10 45 40 E
8 55 80 90 H
6 60 75 80 F
3.1 30 12 35 C
1 20 10 25 A
4 42 20 20 D
9 80 85 92 I
8.1 55 80 90 H
The process of bagging is building separate models for each bootstrap sample and then applying all these models to a new observation for predicting the outcome. Finally, these predictions are aggregated in some form (e.g., taking the average) to obtain a final prediction for the new observation. The idea of bagging can technically be applied to any prediction model (e.g., CNN’s, regression models). During the model process from each bootstrap sample, no regularization was applied, and models were developed to their full complexity. So, we obtain so many unbiased models. While each model has a significant sample variance, we hope to reduce this sampling variance by aggregating the predictions from all these models at the end.
rpart
packageIn this section, we will apply the bagging idea to decision trees to predict the readability scores. First, we import and prepare data for modeling. Then, we split the data into training and test pieces.
# Import the dataset
readability <- read.csv(here('data/readability_features.csv'),header=TRUE)
# Write the recipe
require(recipes)
blueprint_readability <- recipe(x = readability,
vars = colnames(readability),
roles = c(rep('predictor',768),'outcome')) %>%
step_zv(all_numeric()) %>%
step_nzv(all_numeric()) %>%
step_normalize(all_numeric_predictors())
# Train/Test Split
set.seed(10152021) # for reproducibility
loc <- sample(1:nrow(readability), round(nrow(readability) * 0.9))
read_tr <- readability[loc, ]
read_te <- readability[-loc, ]
dim(read_tr)
dim(read_te)
The code below will take a
We will repeat this process ten times.
require(caret)
bag.models <- vector('list',10)
for(i in 1:10){
# Bootstrap sample
temp_rows <- sample(1:nrow(read_tr),nrow(read_tr),replace=TRUE)
temp <- read_tr[temp_rows,]
# Train the tree model with no pruning and no cross validation
grid <- data.frame(cp=0)
cv <- trainControl(method = "none")
bag.models[[i]] <- caret::train(blueprint_readability,
data = temp,
method = 'rpart',
tuneGrid = grid,
trControl = cv,
control = list(minsplit=20,
minbucket = 2,
maxdepth = 60))
}
Now, we will use each of these models to predict the readability score for the test data. We will also average these predictions. Then, we will save the predictions in a matrix form to compare.
preds <- data.frame(obs = read_te[,c('target')])
preds$model1 <- predict(bag.models[[1]],read_te)
preds$model2 <- predict(bag.models[[2]],read_te)
preds$model3 <- predict(bag.models[[3]],read_te)
preds$model4 <- predict(bag.models[[4]],read_te)
preds$model5 <- predict(bag.models[[5]],read_te)
preds$model6 <- predict(bag.models[[6]],read_te)
preds$model7 <- predict(bag.models[[7]],read_te)
preds$model8 <- predict(bag.models[[8]],read_te)
preds$model9 <- predict(bag.models[[9]],read_te)
preds$model10 <- predict(bag.models[[10]],read_te)
preds$average <- rowMeans(preds[,2:11])
head(round(preds,3))
obs model1 model2 model3 model4 model5 model6 model7 model8
1 0.246 -0.827 0.355 0.619 -0.925 -0.956 0.260 -0.095 -0.224
2 -0.188 -1.399 -0.963 -0.458 0.635 -0.415 -0.684 -0.101 -0.963
3 -0.135 -0.235 1.149 0.827 0.663 0.015 0.865 0.693 -0.013
4 0.395 0.690 0.355 1.361 0.025 -0.271 0.119 -0.406 -0.044
5 -0.371 -1.232 -0.901 -1.968 -1.147 -1.420 -1.393 -1.104 0.114
6 -1.156 -0.173 -0.531 -0.694 -1.390 -0.508 -0.690 -0.769 0.360
model9 model10 average
1 -0.610 0.433 -0.197
2 -0.610 0.259 -0.470
3 0.242 -0.253 0.395
4 0.005 0.739 0.257
5 -1.024 -1.125 -1.120
6 -0.252 -0.894 -0.554
Now, let’s compute the RMSE for each model’s predicted scores and the RMSE for the average of predicted scores from all ten tree models.
p1 <- sqrt(mean((preds$obs - preds$model1)^2))
p2 <- sqrt(mean((preds$obs - preds$model2)^2))
p3 <- sqrt(mean((preds$obs - preds$model3)^2))
p4 <- sqrt(mean((preds$obs - preds$model4)^2))
p5 <- sqrt(mean((preds$obs - preds$model5)^2))
p6 <- sqrt(mean((preds$obs - preds$model6)^2))
p7 <- sqrt(mean((preds$obs - preds$model7)^2))
p8 <- sqrt(mean((preds$obs - preds$model8)^2))
p9 <- sqrt(mean((preds$obs - preds$model9)^2))
p10 <- sqrt(mean((preds$obs - preds$model10)^2))
p.ave <- sqrt(mean((preds$obs - preds$average)^2))
ggplot()+
geom_point(aes(x = 1:11,y=c(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p.ave)))+
xlab('Model Predictions') +
ylab('RMSE') +
ylim(0,1) +
scale_x_continuous(breaks = 1:11,
labels=c('Model 1','Model 2', 'Model 3', 'Model 4',
'Model 5','Model 6', 'Model 7', 'Model 8',
'Model 9','Model 10','Bagged'))+
theme_bw()+
annotate('text',
x = 1:11,
y=c(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p.ave)*1.03,
label = round(c(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p.ave),3),
cex=3)
As it is evident, the bagging of 10 different tree models significantly improved the predictions on the test dataset.
ranger
and caret::train()
packagesInstead of writing your code to implement the idea of bagging for decision trees, we can use the ranger
method via caret::train()
.
require(ranger)
getModelInfo()$ranger$parameters
parameter class label
1 mtry numeric #Randomly Selected Predictors
2 splitrule character Splitting Rule
3 min.node.size numeric Minimal Node Size
The caret::train()
allows us manipulate three parameters while using the ranger
method:
splitrule: set this to ‘variance’ for regression problems with continuous outcome. Other alternatives are extratrees
, maxstat
, and beta
.
min.node.size.: this is identical to minbucket
argument in the rpart
method and indicates the minimum number of observations for each node.
mtry: this is the most critical parameter for this method and indicates the number of predictors to consider for developing tree models. For bagged decision trees, you can set this to the number of all predictors in your model
# Cross validation settings
read_tr = read_tr[sample(nrow(read_tr)),]
# Create 10 folds with equal size
folds = cut(seq(1,nrow(read_tr)),breaks=10,labels=FALSE)
# Create the list for each fold
my.indices <- vector('list',10)
for(i in 1:10){
my.indices[[i]] <- which(folds!=i)
}
cv <- trainControl(method = "cv",
index = my.indices)
# Grid, running with all predictors in the data (768)
grid <- expand.grid(mtry = 768,splitrule='variance',min.node.size=2)
grid
mtry splitrule min.node.size
1 768 variance 2
# Bagging with 10 tree models
bagged.trees <- caret::train(blueprint_readability,
data = read_tr,
method = 'ranger',
trControl = cv,
tuneGrid = grid,
num.trees = 10,
max.depth = 60)
Let’s check the cross-validated performance metrics.
bagged.trees$results
mtry splitrule min.node.size RMSE Rsquared MAE
1 768 variance 2 0.6804536 0.5683141 0.543069
RMSESD RsquaredSD MAESD
1 0.02011178 0.02586802 0.01373682
The performance is very similar to what we got in our DIY demonstration.
A couple of things to note:
When you set max.depth=
argument within the caret::train
function, it passes this to the ranger
function. Try to set this number to as large as possible, so you develop each tree to its full capacity.
The penalty term is technically zero (cp
parameter in the rpart
function) while building each tree model. In Bagging, we deal with the model variance differently. Instead of applying a penalty term, we ensemble many unpenalized tree models to reduce the model variance.
It is a little tricky to obtain reproducible results from this procedure. See this link to learn more about accomplishing that.
The number of trees (bootstrap samples) is a hyperparameter to tune. Conceptually, the model performance will improve as you increase the number of tree models used in Bagging; however, the performance will stabilize at some point. It is a tuning process to find the minimum number of tree models in Bagging to obtain the maximal model performance.
Unfortunately, caret::train
does not let us define the num.trees
argument as a hyperparameter in the grid search. So, the only way to search for the optimal number of trees is to use the ranger
method via caret::train
function and iterate over a set of values for the num.trees
argument. Then, compare the model performance and pick the optimal number of tree models.
The code below implements this idea and saves the results from each iteration in a list object.
# Run the bagged trees by iterating over num.trees using the
# values 5, 20, 40, 60, ..., 200
nbags <- c(5,seq(from = 20,to = 200, by = 20))
bags <- vector('list',length(nbags))
for(i in 1:length(nbags)){
bags[[i]] <- caret::train(blueprint_readability,
data = read_tr,
method = 'ranger',
trControl = cv,
tuneGrid = grid,
num.trees = nbags[i],
max.depth = 60)
print(i)
}
# This can take a few hours to run.
Let’s check the cross-validated RMSE for the bagged tree models with different number of trees.
rmses <- c()
for(i in 1:length(nbags)){
rmses[i] = bags[[i]]$results$RMSE
}
ggplot()+
geom_line(aes(x=nbags,y=rmses))+
xlab('Number of Trees')+
ylab('RMSE')+
ylim(c(0.6,0.75))+
theme_bw()
nbags[which.min(rmses)]
[1] 180
It indicates that the RMSE stabilizes after roughly 60 tree models. We can see that a bagged tree model with 180 trees gave the best result. Let’s see how well this model performs on the test data.
# Predictions from a Bagged tree model with 180 trees
predicted_te <- predict(bags[[10]],read_te)
# MAE
mean(abs(read_te$target - predicted_te))
[1] 0.4776075
[1] 0.6003086
# R-square
cor(read_te$target,predicted_te)^2
[1] 0.6646118
Now, we can add this to our comparison list to remember how well this performs compared to other methods.
R-square | MAE | RMSE | |
---|---|---|---|
Linear Regression | 0.658 | 0.499 | 0.620 |
Ridge Regression | 0.727 | 0.432 | 0.536 |
Lasso Regression | 0.721 | 0.433 | 0.542 |
Elastic Net | 0.726 | 0.433 | 0.539 |
KNN | 0.611 | 0.519 | 0.648 |
Decision Tree | 0.499 | 0.574 | 0.724 |
Bagged Trees | 0.664 | 0.478 | 0.600 |
Random Forests is an idea very similar to Bagging with an extra feature. In Random Forests, while we take a bootstrap sample of observations (a random sample of rows in training data with replacement), we also take a random sample of columns for each split while developing a tree model. It allows us to develop tree models more independently of each other.
When specific important predictors are related to the outcome, the tree models developed using all predictors will be very similar, particularly at the top nodes, although we take bootstrap samples. These trees will be correlated to each other, which may reduce the efficiency of BAGGING in reducing the variance. We can diversify the tree models by randomly sampling a certain number of predictors while developing each tree. It turns out that a diverse group of tree models does much better in predicting the outcome than a group of tree models similar to each other.
We can use the same ranger
package to fit the random forests models by only changing the mtry
argument in our grid. Below, we will fit a random forests model with ten trees by randomly sampling from rows for each tree. In addition, when we develop each tree model, we will also randomly sample 300 predictors. I set mtry=300
in the grid
object, indicating that it will randomly sample 300 predictors to consider for each split when developing each tree.
# Grid, randomly sample 300 predictors
grid <- expand.grid(mtry = 300,splitrule='variance',min.node.size=2)
grid
mtry splitrule min.node.size
1 300 variance 2
# Random Forest with 10 tree models
rforest <- caret::train(blueprint_readability,
data = read_tr,
method = 'ranger',
trControl = cv,
tuneGrid = grid,
num.trees = 10,
max.depth = 60)
rforest$times
$everything
user system elapsed
218.30 0.85 140.11
$final
user system elapsed
20.44 0.02 12.40
$prediction
[1] NA NA NA
Let’s check the cross-validated performance metrics.
rforest$results
mtry splitrule min.node.size RMSE Rsquared MAE
1 300 variance 2 0.6829234 0.5674509 0.5430574
RMSESD RsquaredSD MAESD
1 0.01628784 0.02833995 0.01213438
For random forests, there are two hyperparameters to tune:
mtry
, the number of predictors to choose for each split during the tree model development
num.trees
, the number of trees.
As mentioned before, unfortunately, the caret::train
only allows mtry
in the grid search. For the number of trees, one should embed it in a for
loop to iterate over a set of values. The code below hypothetically implements this idea by trying ten different mtry
values (100,150,200,250,300,350,400,450,500,550) and saves the results from each iteration in a list object. However, I haven’t run it, which may take a long time.
# Grid Settings
grid <- expand.grid(mtry = c(100,150,200,250,300,350,400,450,500,550),
splitrule='variance',
min.node.size=2)
# Run the bagged trees by iterating over num.trees values from 1 to 200
bags <- vector('list',200)
for(i in 1:200){
bags[[i]] <- caret::train(blueprint_readability,
data = read_tr,
method = 'ranger',
trControl = cv,
tuneGrid = grid,
num.trees = i,
max.depth = 60,)
}
Instead, I run this by fixing mtry=300
and then iterating over the number of trees for values of 5, 20, 40, 60, 80, …, 200 (as we did for bagged trees).
rmses <- c()
for(i in 1:length(nbags)){
rmses[i] = bags[[i]]$results$RMSE
}
ggplot()+
geom_line(aes(x=nbags,y=rmses))+
xlab('Number of Trees')+
ylab('RMSE')+
ylim(c(0.6,0.75))+
theme_bw()
nbags[which.min(rmses)]
[1] 160
RMSE similarly stabilized after roughly 60 trees. Let’s see how well the model with 200 trees perform.
# Predictions from a Random Forest model with 160 trees
predicted_te <- predict(bags[[11]],read_te)
# MAE
mean(abs(read_te$target - predicted_te))
[1] 0.4756419
[1] 0.6003527
# R-square
cor(read_te$target,predicted_te)^2
[1] 0.6690829
Below is our comparison table with Random Forests added. As you see, there is a slight improvement over Bagged Trees, and we can improve this a little more by trying different values of mtry
and finding an optimal number.
R-square | MAE | RMSE | |
---|---|---|---|
Linear Regression | 0.658 | 0.499 | 0.620 |
Ridge Regression | 0.727 | 0.432 | 0.536 |
Lasso Regression | 0.721 | 0.433 | 0.542 |
Elastic Net | 0.726 | 0.433 | 0.539 |
KNN | 0.611 | 0.519 | 0.648 |
Decision Tree | 0.499 | 0.574 | 0.724 |
Bagged Trees | 0.664 | 0.478 | 0.600 |
Random Forests | 0.669 | 0.476 | 0.600 |
In this section, I provide the R code to predict recidivism using Bagged Trees and Random Forests.
Import the recidivism dataset and pre-process the variables
# Import data
recidivism <- read.csv('./data/recidivism_y1 removed and recoded.csv',header=TRUE)
# Write the recipe
# List of variable types
outcome <- c('Recidivism_Arrest_Year2')
id <- c('ID')
categorical <- c('Residence_PUMA',
'Prison_Offense',
'Age_at_Release',
'Supervision_Level_First',
'Education_Level',
'Prison_Years',
'Gender',
'Race',
'Gang_Affiliated',
'Prior_Arrest_Episodes_DVCharges',
'Prior_Arrest_Episodes_GunCharges',
'Prior_Conviction_Episodes_Viol',
'Prior_Conviction_Episodes_PPViolationCharges',
'Prior_Conviction_Episodes_DomesticViolenceCharges',
'Prior_Conviction_Episodes_GunCharges',
'Prior_Revocations_Parole',
'Prior_Revocations_Probation',
'Condition_MH_SA',
'Condition_Cog_Ed',
'Condition_Other',
'Violations_ElectronicMonitoring',
'Violations_Instruction',
'Violations_FailToReport',
'Violations_MoveWithoutPermission',
'Employment_Exempt')
numeric <- c('Supervision_Risk_Score_First',
'Dependents',
'Prior_Arrest_Episodes_Felony',
'Prior_Arrest_Episodes_Misd',
'Prior_Arrest_Episodes_Violent',
'Prior_Arrest_Episodes_Property',
'Prior_Arrest_Episodes_Drug',
'Prior_Arrest_Episodes_PPViolationCharges',
'Prior_Conviction_Episodes_Felony',
'Prior_Conviction_Episodes_Misd',
'Prior_Conviction_Episodes_Prop',
'Prior_Conviction_Episodes_Drug',
'Delinquency_Reports',
'Program_Attendances',
'Program_UnexcusedAbsences',
'Residence_Changes',
'Avg_Days_per_DrugTest',
'Jobs_Per_Year')
props <- c('DrugTests_THC_Positive',
'DrugTests_Cocaine_Positive',
'DrugTests_Meth_Positive',
'DrugTests_Other_Positive',
'Percent_Days_Employed')
# Convert all nominal, ordinal, and binary variables to factors
for(i in categorical){
recidivism[,i] <- as.factor(recidivism[,i])
}
# Blueprint for processing variables
require(recipes)
blueprint_recidivism <- recipe(x = recidivism,
vars = c(categorical,numeric,props,outcome,id),
roles = c(rep('predictor',48),'outcome','ID')) %>%
step_indicate_na(all_of(categorical),all_of(numeric),all_of(props)) %>%
step_zv(all_numeric()) %>%
step_impute_mean(all_of(numeric),all_of(props)) %>%
step_impute_mode(all_of(categorical)) %>%
step_logit(all_of(props),offset=.001) %>%
step_poly(all_of(numeric),all_of(props),degree=2) %>%
step_normalize(paste0(numeric,'_poly_1'),
paste0(numeric,'_poly_2'),
paste0(props,'_poly_1'),
paste0(props,'_poly_2')) %>%
step_dummy(all_of(categorical),one_hot=TRUE) %>%
step_num2factor(Recidivism_Arrest_Year2,
transform = function(x) x + 1,
levels=c('No','Yes'))
blueprint_recidivism
2. Train/Test Split
# Cross validation settings
set.seed(10302021) # for reproducibility
recidivism_tr = recidivism_tr[sample(nrow(recidivism_tr)),]
# Create 10 folds with equal size
folds = cut(seq(1,nrow(recidivism_tr)),breaks=10,labels=FALSE)
# Create the list for each fold
my.indices <- vector('list',10)
for(i in 1:10){
my.indices[[i]] <- which(folds!=i)
}
cv <- trainControl(method = "cv",
index = my.indices,
classProbs = TRUE,
summaryFunction = mnLogLoss)
# Grid settings
# Notice that I use **'gini'** for splitrule because this is
# now a classification problem.
grid <- expand.grid(mtry = 142,
splitrule='gini',
min.node.size=2)
grid
# Run the BAGGED Trees with different number of trees
# 5, 20, 40, 60, ..., 200
nbags <- c(5,seq(20,200,20))
bags <- vector('list',length(nbags))
for(i in 1:length(nbags)){
bags[[i]] <- caret::train(blueprint_recidivism,
data = recidivism_tr,
method = 'ranger',
trControl = cv,
tuneGrid = grid,
metric = 'logLoss',
num.trees = nbags[i],
max.depth = 60)
}
logLoss_ <- c()
for(i in 1:length(nbags)){
logLoss_[i] = bags[[i]]$results$logLoss
}
ggplot()+
geom_line(aes(x=nbags,y=logLoss_))+
xlab('Number ofs')+
ylab('Negative LogLoss')+
ylim(c(0.4,2))+
theme_bw()
nbags[which.min(logLoss_)]
[1] 200
# Predict the probabilities for the observations in the test dataset
predicted_te <- predict(bags[[11]], recidivism_te, type='prob')
dim(predicted_te)
[1] 5460 2
head(predicted_te)
No Yes
1 0.9900 0.0100
2 0.6050 0.3950
3 0.6150 0.3850
4 0.5675 0.4325
5 0.7725 0.2275
6 0.6900 0.3100
# Compute the AUC
require(cutpointr)
cut.obj <- cutpointr(x = predicted_te$Yes,
class = recidivism_te$Recidivism_Arrest_Year2)
auc(cut.obj)
[1] 0.7241845
# Confusion matrix assuming the threshold is 0.5
pred_class <- ifelse(predicted_te$Yes>.5,1,0)
confusion <- table(recidivism_te$Recidivism_Arrest_Year2,pred_class)
confusion
pred_class
0 1
0 3957 189
1 1125 189
# True Negative Rate
confusion[1,1]/(confusion[1,1]+confusion[1,2])
[1] 0.9544139
# False Positive Rate
confusion[1,2]/(confusion[1,1]+confusion[1,2])
[1] 0.04558611
# True Positive Rate
confusion[2,2]/(confusion[2,1]+confusion[2,2])
[1] 0.1438356
# Precision
confusion[2,2]/(confusion[1,2]+confusion[2,2])
[1] 0.5
-LL | AUC | ACC | TPR | TNR | FPR | PRE | |
---|---|---|---|---|---|---|---|
Bagged Trees | 0.506 | 0.724 | 0.759 | 0.144 | 0.954 | 0.046 | 0.500 |
Logistic Regression | 0.510 | 0.719 | 0.755 | 0.142 | 0.949 | 0.051 | 0.471 |
Logistic Regression with Ridge Penalty | 0.511 | 0.718 | 0.754 | 0.123 | 0.954 | 0.046 | 0.461 |
Logistic Regression with Lasso Penalty | 0.509 | 0.720 | 0.754 | 0.127 | 0.952 | 0.048 | 0.458 |
Logistic Regression with Elastic Net | 0.509 | 0.720 | 0.753 | 0.127 | 0.952 | 0.048 | 0.456 |
KNN | ? | ? | ? | ? | ? | ? | ? |
Decision Tree | 0.558 | 0.603 | 0.757 | 0.031 | 0.986 | 0.014 | 0.423 |
# Grid settings
grid <- expand.grid(mtry = 80,splitrule='gini',min.node.size=2)
# The only difference for random forests is that I set mtry = 80
# Run the Random Forests with different number of trees
# 5, 20, 40, 60, ..., 200
nbags <- c(5,seq(20,200,20))
bags <- vector('list',length(nbags))
for(i in 1:length(nbags)){
bags[[i]] <- caret::train(blueprint_recidivism,
data = recidivism_tr,
method = 'ranger',
trControl = cv,
tuneGrid = grid,
metric = 'logLoss',
num.trees = nbags[i],
max.depth = 60)
}
logLoss_ <- c()
for(i in 1:length(nbags)){
logLoss_[i] = bags[[i]]$results$logLoss
}
ggplot()+
geom_line(aes(x=nbags,y=logLoss_))+
xlab('Number ofs')+
ylab('Negative LogLoss')+
ylim(c(0.4,2))+
theme_bw()
nbags[which.min(logLoss_)]
[1] 180
# Predict the probabilities for the observations in the test dataset
predicted_te <- predict(bags[[10]], recidivism_te, type='prob')
# Compute the AUC
cut.obj <- cutpointr(x = predicted_te$Yes,
class = recidivism_te$Recidivism_Arrest_Year2)
auc(cut.obj)
[1] 0.7251904
# Confusion matrix assuming the threshold is 0.5
pred_class <- ifelse(predicted_te$Yes>.5,1,0)
confusion <- table(recidivism_te$Recidivism_Arrest_Year2,pred_class)
confusion
pred_class
0 1
0 3956 190
1 1113 201
# True Negative Rate
confusion[1,1]/(confusion[1,1]+confusion[1,2])
[1] 0.9541727
# False Positive Rate
confusion[1,2]/(confusion[1,1]+confusion[1,2])
[1] 0.0458273
# True Positive Rate
confusion[2,2]/(confusion[2,1]+confusion[2,2])
[1] 0.152968
# Precision
confusion[2,2]/(confusion[1,2]+confusion[2,2])
[1] 0.5140665
-LL | AUC | ACC | TPR | TNR | FPR | PRE | |
---|---|---|---|---|---|---|---|
Random Forests | 0.507 | 0.725 | 0.761 | 0.153 | 0.954 | 0.046 | 0.514 |
Bagged Trees | 0.506 | 0.724 | 0.759 | 0.144 | 0.954 | 0.046 | 0.500 |
Logistic Regression | 0.510 | 0.719 | 0.755 | 0.142 | 0.949 | 0.051 | 0.471 |
Logistic Regression with Ridge Penalty | 0.511 | 0.718 | 0.754 | 0.123 | 0.954 | 0.046 | 0.461 |
Logistic Regression with Lasso Penalty | 0.509 | 0.720 | 0.754 | 0.127 | 0.952 | 0.048 | 0.458 |
Logistic Regression with Elastic Net | 0.509 | 0.720 | 0.753 | 0.127 | 0.952 | 0.048 | 0.456 |
KNN | ? | ? | ? | ? | ? | ? | ? |
Decision Tree | 0.558 | 0.603 | 0.757 | 0.031 | 0.986 | 0.014 | 0.423 |
Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".